Calculation policy: Multiplication

Key language: double, groups of, lots of, equal groups, repeated addition, times, multiplied by, product, factor, multiplier, multiplicand

EYFS

- solve problems including doubling

Band 1

- solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
- count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Concrete

Counting in multiplies

Count in multiples supported by concrete objects in equal groups.

Pictorial

Use a counting stick, number line or pictures to continue support in counting in multiples.

Splat the multiples on a hundred square

Abstract

Count in multiples of a number aloud.
Write sequences with multiples of numbers.
$2,4,6,8,10$
$5,10,15,20,25,30$
Count with hidden groups of 2,5 and 10 .

Page 3 of 12

Create arrays using children/counters/ cubes to show repeated addition as '....rows of...'. or ...'lots of...' and commutativity.

4 rows of 5 is 20 5 rows of 4 is 20

2 lots of 5

Draw arrays in different rotations to find commutative multiplication sentences

Children to be able to use an array to write a range of calculations and understand the meaning of the equals signe.g.
$2+2+2+2+2=10$
$10=5+5$

Band 2

- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Concrete	Pictoria	Abstract
Recognising equal groups Use a range of visuals to support understanding of equal groups and making equal groups 3 equal groups of 2	2 equal groups of 10	There are \qquad equal groups with \qquad in each group. There are three \qquad \qquad $+\ldots+$ \qquad $=12$

Recognising the relationship between multiplication and repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Create arrays using children/counters/ cubes to show repeated addition, multiplication and commutativity. 4 rows of 5 is 20 $4 \times 5=20$ 5 rows of 4 is 20 $5 \times 4=20$	Draw arrays in different rotations to find commutative multiplication sentences.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Band 3

- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Concrete

Concrete resources to solve th
sentence, e.g. numicon, diene
counters,
$4 \times 15=60$

Pictorial

Use bar model to show relationship between whole/ parts for multiplication and makes links to division.

$$
\begin{aligned}
& 4 \times 15=60 \\
& 60 \div 15=4 \\
& 60 \div 4=15
\end{aligned}
$$

$$
4 \times 15=60
$$

Abstract

Use of the triangle to identify the 4 linked number sentences.

$$
\begin{aligned}
& 15 \times 4=60 \\
& 4 \times 15=60 \\
& 60 \div 15=4 \\
& 60 \div 4=15
\end{aligned}
$$

15

Partition to multiply

Partition to multiply with place value counters (dienes, numiconcan alsobe used.) 3×23
Multiply the parts knowing known multiplication facts.
2 colours show distributive law.
$4 \times 15=60$

A blank number line can be drawn.
$4 \times 15=60$

Grid method

Show the link with arrays to first introduce the grid method.
$4 \times 13=52$

4 rows of 10
4 rows of 3

Move on to using dienes to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.
$4 \times 13=52$

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\mathbf{x}	$\mathbf{1 0}$	$\mathbf{3}$
$\mathbf{4}$	40	12

$40+12=52$

Formal expanded written method

$$
\begin{array}{r}
13 \\
\times \quad 4 \\
\hline 12=4 \times 3 \\
\underline{40}=4 \times 10 \\
\underline{52}=12+40
\end{array}
$$

Pupils should be taught to:

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
- recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Concrete

Grid method

Use place counters to show how we are finding groups of a number.We are multiplying by 13 , so we need 13 rows.
$18 \times 13=234$

Pictorial

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

	200	60	4
8	1600	480	32

Abstract

Formal written method
 Expanded written method

18	
$\times \quad 13$	
24	$=8 \times 3$
30	$=3 \times 10$
80	$=10 \times 8$
100	$=10 \times 10$
234	$=24+30+80+100$

Short column multiplication
18
$\times 13$
$\times 234$
$\frac{234}{2}$

264
$x 8$
$\frac{2112}{53}$

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Concrete	Pictorial	Abstract
See earier bands for strategies to use.		

Conceptual variation; different ways to ask children to solve 6x23

