Calculation policy: Division

Key language: halve, half, share, group, divide, divided by, groups of, dividend (the amount to be divided), divisor (what you are dividing by)

EYFS

- solve problems including halving and sharing

Concrete	Pictorial	Abstract
Childeren to sharea a ange of ofiecols equally-		There are apples shared between two baskets. How many apples in each?
	量 ${ }^{5}$	Children to solve this problem using concrete objects or draw pictures.
20)		

Children to split objects into half - e.g. cutting fruit

Band 1

- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Concrete	Pictoria	Abstract
Sharing using a range of objects. Share 6 objects between 2.	Represent the sharing pictorially.	$6 \div 2=3$3 3 Children should also be encouraged to use their2timestables facts.

Band 2

- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Concrete	P'ctoria	Abstract
Sharing - Make equal groups Using a range of objects $6 \div 2$	Represent the sharing pictorially. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$6 \div 2=3$3 3 Children should also be encouraged to use their2times tablesfacts.

Grouping - Make equal groups

How many lots of 3 go into 15 ?
Divide quantities into equal groups.
Use cubes, counters, objects or place value counters to aid understanding.
$10 \div 2=5$

$20 \div 5=4$
How many 5 s in 20 ?

Recognising the relationship between division and

 multiplicationLink division to multiplication by creating an array and thinking about the number sentences that can be created.
$15 \div 3=5$
$5 \times 3=15$

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

$$
\begin{aligned}
& 10 \div 2=5
\end{aligned}
$$

Draw an array and use lines to split the array into groups to make multiplication and division sentences.
$28 \div 4=7$
How many groups of 4 in 28 ?

Find the inverse of multiplication and division sentences by creating four linking number sentences.
$7 \times 4=28$
$4 \times 7=28$
$28 \div 7=4$
$28 \div 4=7$

$\begin{aligned} & 4 \times 3=12 \\ & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$	Use bar model to show relationship between whole/ parts for multiplication and makes links to division. $\begin{aligned} & 4 \times 3=12 \\ & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$	Use of the triangle to identify the 4 linked number sentences.
Division with remainders Children to be introduced to the concept of remainders using pairs of socks. How many pairs of socks can you make? 7 socks put into pairs is 3 pairs with 1 left over $7 \div 2=3 r 1$		Use known facts $11 \div 2$ I know $5 \times 2=10$, so $11 \div 2$ must be 5 with a remainder 1 .

Band 3

- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Concrete	Plotial	Abstract		
Dvision with remainders				
$14 \div 3=4 \mathrm{r} 2$				
Divide objects between groups and see				
how much is left over				Draw dots and group them to divide an amount and
:---				
clearly show a remainder.				
$14 \div 3=4 \mathrm{r} 2$				

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.
Short division usingplacevalue
counterstogroup. $615 \div 5$

Short division Use place value counters as seen above	Represent the place value counters pictorially (see above reference)	$\begin{aligned} & 2544 \div 12 \\ & 0212 \\ & 1 2 \longdiv { 2 5 4 4 } \end{aligned}$ Children can write a times table fact box, prior to solving the question, to support them. E.g: $\begin{aligned} & 1 \times 12=12 \\ & 2 \times 12=24 \\ & 3 \times 12=36 \end{aligned}$ etc

Band 6

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers

Concrete

Long division using place value counters $2544 \div 12$					
1000s	100s	10s	Is	We can't group 2 thousands into groups of 12 so will exchange them.	
$\bigcirc 0$	8000	O000	0000		
1000s	100s	10s	Is	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.	$\begin{gathered} 1 2 \longdiv { 0 2 } \\ \frac{24}{2544} \\ \frac{1}{1} \end{gathered}$
		-000	రె刃ర		
1000s	100s	10s	1 l	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.	12 $\frac{021}{254}$
			-णరెర		122544 24 14 12

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be putinto 5 groups. How many will beineach group?
$5 \longdiv { 6 1 5 }$
$615 \div 5=$
[] $=615 \div 5$

What is the calculation?
What is the answer?

100s	10 s	1s
$\Theta^{\boldsymbol{\Theta}}$		00000
$\Theta^{\boldsymbol{\Theta}}$	00000	00000
		00000

